Structural differences between wild-type and fish eye disease mutant of lecithin:cholesterol acyltransferase.

نویسندگان

  • Yana Reshetnyak
  • Kissaou T Tchedre
  • Maya P Nair
  • P Haydn Pritchard
  • Andras G Lacko
چکیده

Fluorescence spectroscopy has been used to investigate the conformational changes that occur upon binding of wild type (WT) and mutant (Thr123Ile) lecithin:cholesterol acyltransferase (LCAT) to the potential substrates (dioleoyl-phosphatidyl choline [DOPC] and high density lipoprotein [HDL]). For a detailed analysis of structural differences between WT and mutant LCAT, we performed decompositional analysis of a set of tryptophan fluorescence spectra, measured at increasing concentrations of external quenchers (acrylamide and KI). The data obtained show that Thr123Ile mutation in LCAT leads to a conformation that is likely to be more rigid (less mobile/flexible) than that of the WT protein with a redistribution of charged residues around exposed tryptophan fluorophores. We propose that the redistribution of charged residues in mutant LCAT may be a major factor responsible for the dramatically reduced activity of the enzyme with HDL and reconstituted high density lipoprotein (rHDL).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of natural mutations in lecithin:cholesterol acyltransferase on the enzyme structure and activity.

A molecular model was built for human lecithin:cholesterol acyltransferase (LCAT) based upon the structural homology between this enzyme and lipases (Peelman et al. 1998. Prot. Sci. 7: 585-597). We proposed that LCAT belongs to the alpha/beta hydrolase fold family, and that the central domain of LCAT consists of a mixed seven-stranded beta-pleated sheet with four alpha-helices and loops linking...

متن کامل

The molecular basis of lecithin:cholesterol acyltransferase deficiency syndromes: a comprehensive study of molecular and biochemical findings in 13 unrelated Italian families.

OBJECTIVE To better understand the role of lecithin:cholesterol acyltransferase (LCAT) in lipoprotein metabolism through the genetic and biochemical characterization of families carrying mutations in the LCAT gene. METHODS AND RESULTS Thirteen families carrying 17 different mutations in the LCAT gene were identified by Lipid Clinics and Departments of Nephrology throughout Italy. DNA analysis...

متن کامل

ویژگی‌های بیوشیمیایی گیاهان آرابیدوپسیس جهش‌یافته ntrc طی پیری القاء ‌شده توسط تاریکی

Abstract Thioredoxins are invoved in redox regulation of many cellular processes. In this study the role of NADP+-Thioredoxin reductase C (NTRC) in the control of leaf senescence was investigated by biochemical characterization of Arabidopsis ntrc mutants. Forty days old wild type and two ntrc mutant lines were incubated either under normal dark-light or continous darkness regimes for 6 days as...

متن کامل

Structure and function of lysosomal phospholipase A2 and lecithin:cholesterol acyltransferase

Lysosomal phospholipase A2 (LPLA2) and lecithin:cholesterol acyltransferase (LCAT) belong to a structurally uncharacterized family of key lipid-metabolizing enzymes responsible for lung surfactant catabolism and for reverse cholesterol transport, respectively. Whereas LPLA2 is predicted to underlie the development of drug-induced phospholipidosis, somatic mutations in LCAT cause fish eye diseas...

متن کامل

QSARS OF ANTI-FUNGAL ACTIVITY OF FURAN CARBOXANILIDE DERIVATIVES AGAINST WILD AND MUTANT STRAINS OF USTILAGO MAYDIS

The structural requirements for the inhibitor activity of various furan carboxanilide derivatives against succinate dehydrogenase complex (SDC) activity in mitochondria of either wild or mutant strains of Ustilago maydis were investigated with the aid of Hansch QSAR analysis. It has been found that the inhibitor activity against both types of enzymes is best related to the ??? or ??M of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biomolecular structure & dynamics

دوره 24 1  شماره 

صفحات  -

تاریخ انتشار 2006